Counting Maximal Arithmetic Subgroups
نویسنده
چکیده
for absolute constants C6, C7. This theorem (almost) follows from [EV, Theorem 1.1], the only point being to control the dependence of implicit constants on the degree of the number field. We refer to [EV] for further information and for some motivational comments about the method. In the proof C1, C2, . . . will denote certain absolute constants. A.2. Let K be an extension of Q of degree d ≥ 200. Denote by Σ(K) the set of embeddings of K into C (#Σ(K) = d), and by Σ(K) a set of representatives for Σ(K) modulo complex conjugation (in the notations of the paper [EV] Σ(K) = V∞(K)). We regard the ring of integers OK as a lattice in K ⊗Q R = ∏
منابع مشابه
Counting Maximal Arithmetic Subgroups Mikhail Belolipetsky with an Appendix by Jordan Ellenberg and Akshay Venkatesh
We study the growth rate of the number of maximal arithmetic subgroups of bounded covolumes in a semi-simple Lie group using an extension of the method due to Borel and Prasad.
متن کاملCounting Maximal Arithmetic Subgroups Mikhail Belolipetsky with an Appendix by Jordan Ellenberg and Akshay Venkatesh
We study the growth rate of the number of maximal arithmetic subgroups of bounded covolumes in a semi-simple Lie group using an extension of the method due to Borel and Prasad.
متن کاملCOUNTING DISTINCT FUZZY SUBGROUPS OF SOME RANK-3 ABELIAN GROUPS
In this paper we classify fuzzy subgroups of a rank-3 abelian group $G = mathbb{Z}_{p^n} + mathbb{Z}_p + mathbb{Z}_p$ for any fixed prime $p$ and any positive integer $n$, using a natural equivalence relation given in cite{mur:01}. We present and prove explicit polynomial formulae for the number of (i) subgroups, (ii) maximal chains of subgroups, (iii) distinct fuzzy subgroups, (iv) non-isomorp...
متن کاملCounting Maximal Arithmetic Subgroups Mikhail Belolipetsky with an Appendix by Jordan Ellenberg and Akshay Venkatesh
We study the growth rate of the number of maximal arithmetic subgroups of bounded covolumes in a semi-simple Lie group using an extension of the method due to Borel and Prasad. As an application we prove a nonuniform case of a conjecture of Lubotzky et al. on the growth of lattices in higher rank semi-simple Lie group H, which claims that the growth rate is asymptotically equal to the congruenc...
متن کاملAn arithmetic method of counting the subgroups of a finite abelian group
The main goal of this paper is to apply the arithmetic method developed in our previous paper [13] to determine the number of some types of subgroups of finite abelian groups.
متن کاملOn the type of conjugacy classes and the set of indices of maximal subgroups
Let $G$ be a finite group. By $MT(G)=(m_1,cdots,m_k)$ we denote the type of conjugacy classes of maximal subgroups of $G$, which implies that $G$ has exactly $k$ conjugacy classes of maximal subgroups and $m_1,ldots,m_k$ are the numbers of conjugates of maximal subgroups of $G$, where $m_1leqcdotsleq m_k$. In this paper, we give some new characterizations of finite groups by ...
متن کامل