Counting Maximal Arithmetic Subgroups

نویسنده

  • A. Venkatesh
چکیده

for absolute constants C6, C7. This theorem (almost) follows from [EV, Theorem 1.1], the only point being to control the dependence of implicit constants on the degree of the number field. We refer to [EV] for further information and for some motivational comments about the method. In the proof C1, C2, . . . will denote certain absolute constants. A.2. Let K be an extension of Q of degree d ≥ 200. Denote by Σ(K) the set of embeddings of K into C (#Σ(K) = d), and by Σ(K) a set of representatives for Σ(K) modulo complex conjugation (in the notations of the paper [EV] Σ(K) = V∞(K)). We regard the ring of integers OK as a lattice in K ⊗Q R = ∏

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Counting Maximal Arithmetic Subgroups Mikhail Belolipetsky with an Appendix by Jordan Ellenberg and Akshay Venkatesh

We study the growth rate of the number of maximal arithmetic subgroups of bounded covolumes in a semi-simple Lie group using an extension of the method due to Borel and Prasad.

متن کامل

Counting Maximal Arithmetic Subgroups Mikhail Belolipetsky with an Appendix by Jordan Ellenberg and Akshay Venkatesh

We study the growth rate of the number of maximal arithmetic subgroups of bounded covolumes in a semi-simple Lie group using an extension of the method due to Borel and Prasad.

متن کامل

COUNTING DISTINCT FUZZY SUBGROUPS OF SOME RANK-3 ABELIAN GROUPS

In this paper we classify fuzzy subgroups of a rank-3 abelian group $G = mathbb{Z}_{p^n} + mathbb{Z}_p + mathbb{Z}_p$ for any fixed prime $p$ and any positive integer $n$, using a natural equivalence relation given in cite{mur:01}. We present and prove explicit polynomial formulae for the number of (i) subgroups, (ii) maximal chains of subgroups, (iii) distinct fuzzy subgroups, (iv) non-isomorp...

متن کامل

Counting Maximal Arithmetic Subgroups Mikhail Belolipetsky with an Appendix by Jordan Ellenberg and Akshay Venkatesh

We study the growth rate of the number of maximal arithmetic subgroups of bounded covolumes in a semi-simple Lie group using an extension of the method due to Borel and Prasad. As an application we prove a nonuniform case of a conjecture of Lubotzky et al. on the growth of lattices in higher rank semi-simple Lie group H, which claims that the growth rate is asymptotically equal to the congruenc...

متن کامل

An arithmetic method of counting the subgroups of a finite abelian group

The main goal of this paper is to apply the arithmetic method developed in our previous paper [13] to determine the number of some types of subgroups of finite abelian groups.

متن کامل

On the type of conjugacy classes and the set of indices of maximal subgroups

‎Let $G$ be a finite group‎. ‎By $MT(G)=(m_1,cdots,m_k)$ we denote the type of‎ ‎conjugacy classes of maximal subgroups of $G$‎, ‎which implies that $G$ has exactly $k$ conjugacy classes of‎ ‎maximal subgroups and $m_1,ldots,m_k$ are the numbers of conjugates‎ ‎of maximal subgroups of $G$‎, ‎where $m_1leqcdotsleq m_k$‎. ‎In this paper‎, ‎we‎ ‎give some new characterizations of finite groups by ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006